Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Probabilistic Sentential Decision Diagrams (PSDDs) provide efficient methods for modeling and reasoning with probability distributions in the presence of massive logical constraints. PSDDs can also be synthesized from graphical models such as Bayesian networks (BNs) therefore offering a new set of tools for performing inference on these models (in time linear in the PSDD size). Despite these favorable characteristics of PSDDs, we have found multiple challenges in PSDD’s FPGA acceleration. Problems include limited parallelism, data dependency, and small pipeline iterations. In this article, we propose several optimization techniques to solve these issues with novel pipeline scheduling and parallelization schemes. We designed the PSDD kernel with a high-level synthesis (HLS) tool for ease of implementation and verified it on the Xilinx Alveo U250 board. Experimental results show that our methods improve the baseline FPGA HLS implementation performance by 2,200X and the multicore CPU implementation by 20X. The proposed design also outperforms state-of-the-art BN and Sum Product Network (SPN) accelerators that store the graph information in memory.more » « less
-
BackgroundPredicting the likelihood of success of weight loss interventions using machine learning (ML) models may enhance intervention effectiveness by enabling timely and dynamic modification of intervention components for nonresponders to treatment. However, a lack of understanding and trust in these ML models impacts adoption among weight management experts. Recent advances in the field of explainable artificial intelligence enable the interpretation of ML models, yet it is unknown whether they enhance model understanding, trust, and adoption among weight management experts. ObjectiveThis study aimed to build and evaluate an ML model that can predict 6-month weight loss success (ie, ≥7% weight loss) from 5 engagement and diet-related features collected over the initial 2 weeks of an intervention, to assess whether providing ML-based explanations increases weight management experts’ agreement with ML model predictions, and to inform factors that influence the understanding and trust of ML models to advance explainability in early prediction of weight loss among weight management experts. MethodsWe trained an ML model using the random forest (RF) algorithm and data from a 6-month weight loss intervention (N=419). We leveraged findings from existing explainability metrics to develop Prime Implicant Maintenance of Outcome (PRIMO), an interactive tool to understand predictions made by the RF model. We asked 14 weight management experts to predict hypothetical participants’ weight loss success before and after using PRIMO. We compared PRIMO with 2 other explainability methods, one based on feature ranking and the other based on conditional probability. We used generalized linear mixed-effects models to evaluate participants’ agreement with ML predictions and conducted likelihood ratio tests to examine the relationship between explainability methods and outcomes for nested models. We conducted guided interviews and thematic analysis to study the impact of our tool on experts’ understanding and trust in the model. ResultsOur RF model had 81% accuracy in the early prediction of weight loss success. Weight management experts were significantly more likely to agree with the model when using PRIMO (χ2=7.9; P=.02) compared with the other 2 methods with odds ratios of 2.52 (95% CI 0.91-7.69) and 3.95 (95% CI 1.50-11.76). From our study, we inferred that our software not only influenced experts’ understanding and trust but also impacted decision-making. Several themes were identified through interviews: preference for multiple explanation types, need to visualize uncertainty in explanations provided by PRIMO, and need for model performance metrics on similar participant test instances. ConclusionsOur results show the potential for weight management experts to agree with the ML-based early prediction of success in weight loss treatment programs, enabling timely and dynamic modification of intervention components to enhance intervention effectiveness. Our findings provide methods for advancing the understandability and trust of ML models among weight management experts.more » « less
-
Abstract Recent work has shown that the input-output behavior of some common machine learning classifiers can be captured in symbolic form, allowing one to reason about the behavior of these classifiers using symbolic techniques. This includes explaining decisions, measuring robustness, and proving formal properties of machine learning classifiers by reasoning about the corresponding symbolic classifiers. In this work, we present a theory for unveiling thereasonsbehind the decisions made by Boolean classifiers and study some of its theoretical and practical implications. At the core of our theory is the notion of acomplete reason,which can be viewed as a necessary and sufficient condition for why a decision was made. We show how the complete reason can be used for computing notions such as sufficient reasons (also known as PI-explanations and abductive explanations), how it can be used for determining decision and classifier bias and how it can be used for evaluating counterfactual statements such as “a decision will stick even if ...because ... .” We present a linear-time algorithm for computing the complete reasoning behind a decision, assuming the classifier is represented by a Boolean circuit of appropriate form. We then show how the computed complete reason can be used to answer many queries about a decision in linear or polynomial time. We finally conclude with a case study that illustrates the various notions and techniques we introduced.more » « less
-
Quantified Boolean logic results from adding operators to Boolean logic for existentially and universally quantifying variables. This extends the reach of Boolean logic by enabling a variety of applications that have been explored over the decades. The existential quantification of literals (variable states) and its applications have also been studied in the literature. We complement this by studying universal literal quantification and its applications, particularly to explainable AI. We also provide a novel semantics for quantification and discuss the interplay between variable/literal and existential/universal quantification. We further identify classes of Boolean formulas and circuits that allow efficient quantification. Literal quantification is more fine-grained than variable quantification, which leads to a refinement of quantified Boolean logic with literal quantification as its primitive.more » « less
-
The complete reason behind a decision is a Boolean formula that characterizes why the decision was made. This recently introduced notion has a number of applications, which include generating explanations, detecting decision bias and evaluating counterfactual queries. Prime implicants of the complete reason are known as sufficient reasons for the decision and they correspond to what is known as PI explanations and abductive explanations. In this paper, we refer to the prime implicates of a complete reason as necessary reasons for the decision. We justify this terminology semantically and show that necessary reasons correspond to what is known as contrastive explanations. We also study the computation of complete reasons for multi-class decision trees and graphs with nominal and numeric features for which we derive efficient, closed-form complete reasons. We further investigate the computation of shortest necessary and sufficient reasons for a broad class of complete reasons, which include the derived closed forms and the complete reasons for Sentential Decision Diagrams (SDDs). We provide an algorithm which can enumerate their shortest necessary reasons in output polynomial time. Enumerating shortest sufficient reasons for this class of complete reasons is hard even for a single reason. For this problem, we provide an algorithm that appears to be quite efficient as we show empirically.more » « less
-
In many applications, one can define a large set of features to support the classification task at hand. At test time, however, these become prohibitively expensive to evaluate, and only a small subset of features is used, often selected for their information-theoretic value. For threshold-based, Naive Bayes classifiers, recent work has suggested selecting features that maximize the expected robustness of the classifier, that is, the expected probability it maintains its decision after seeing more features. We propose the first algorithm to compute this expected same-decision probability for general Bayesian network classifiers, based on compiling the network into a tractable circuit representation. Moreover, we develop a search algorithm for optimal feature selection that utilizes efficient incremental circuit modifications. Experiments on Naive Bayes, as well as more general networks, show the efficacy and distinct behavior of this decision-making approach.more » « less
An official website of the United States government
